# Scala algorithm: Binary search in a rotated sorted array

Published

## Algorithm goal

This is a variation of BinarySearch, where the input array is rotated (RotateArrayRight).

For example, an input of [1,2,3,4], rotated could become [3,4,1,2].

Binary search runs in \(O(\log{n})\), which is faster than a linear search (\(O(n)\)).

## Test cases in Scala

## Algorithm in Scala

20 lines of Scala (compatible versions 2.13 & 3.0), showing how concise Scala can be!

## Explanation

The Scala implementation uses the Range concept in order to achieve a more terse solution, in particular by defining the range for the next iteration in terms of the previous range, rather than dealing with raw indices.

This is a very powerful concept because you notice that in Scala, algorithms can be quite self-explanatory whereas in some C/Python algorithm implementations one would have to refer to documentation and comments for an explanation. Documentability is crucial in sharing knowledge. (this is Â© from www.scala-algorithms.com)

The variation requires us to capture the case where our range is still uneven. In this case, the code explains the story

## Scala concepts & Hints

### Def Inside Def

A great aspect of Scala is being able to declare functions inside functions, making it possible to reduce repetition.

It is also frequently used in combination with Tail Recursion.

### Option Type

The 'Option' type is used to describe a computation that either has a result or does not. In Scala, you can 'chain' Option processing, combine with lists and other data structures. For example, you can also turn a pattern-match into a function that return an Option, and vice-versa!

### Range

The

`(1 to n)`

syntax produces a "Range" which is a representation of a sequence of numbers.### Stack Safety

Stack safety is present where a function cannot crash due to overflowing the limit of number of recursive calls.

This function will work for n = 5, but will not work for n = 2000 (crash with java.lang.StackOverflowError) - however there is a way to fix it :-)

In Scala Algorithms, we try to write the algorithms in a stack-safe way, where possible, so that when you use the algorithms, they will not crash on large inputs. However, stack-safe implementations are often more complex, and in some cases, overly complex, for the task at hand.

### Tail Recursion

In Scala, tail recursion enables you to rewrite a mutable structure such as a while-loop, into an immutable algorithm.